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Conformal Invariance, Accelerating Universe
and the Cosmological Constant Problem

Yousef Bisabr1,2

We investigate a conformal invariant gravitational model which is taken to hold at
early universe. The conformal invariance allows us to make a dynamical distinction
between the two unit systems (or conformal frames) usually used in cosmology and
elementary particle physics. In this model we argue that when the universe suffers
phase transition, the resulting mass scale introduced by particle physics should have
a variable contribution to vacuum energy density. This variation is controlled by the
conformal factor which is taken as a dynamical field. We then deal with the cosmological
consequences of this model. In particular, we shall show that there is an inationary phase
at early times. At late times, on the other hand, it provides a mechanism which makes a
large effective cosmological constant relax to a sufficiently small value. Moreover, we
shall show that the conformal factor acts as a quintessence field that leads the universe
to accelerate at late times.
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1. INTRODUCTION

There is a fundamental conflict between observations and theoretical esti-
mates on the value of the cosmological constant. In view of the cosmological
observations we have an upper limit on the vacuum energy density which is equiv-
alent to ∼10−29 g/cm3. On the other hand, the standard model of particle physics
implies that the universe has undergone a series of phase transitions at early epoch
of its evolution contributing to the vacuum energy density 120 order of magnitude
larger than this observational bound. Understanding of such a large discrepancy
remains as one of the main problems of theoretical physics. There have been many
attempts trying to resolve the problem (Weinberg, 1989). Most of them are based
on the belief that the cosmological constant � may not have such an extremely
small value at all the time and there should exist a dynamical mechanism work-
ing during evolution of the universe which provides a cancellation of the vacuum
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energy density at late times (Henneaux and Teitelboim, 1984; Abbott, 1985; Banks,
1985; Barr, 1987; Peccei et al., 1987; Barr and Hochberg, 1988; Dolgov, 1983;
Ford, 1987; Suen and Will, 1988).

Among different kinds of such models of a decaying cosmological constant,
more promising ones may be those which consist of a scalar field nonminimally
coupled to gravity which itself is described by the usual Einstein-Hilbert action
with a cosmological term (Dolgov, 1983; Ford, 1987; Suen and Will, 1988). The
scalar field evolves with cosmic expansion in such a way that its energy density
which is unstable due to the gravitational interaction compensates the vacuum
energy density. Generic feature of these models is that they result in an asymp-
totic behavior � ∼ t−2 which in the present epoch roughly gives the observed
upper bound. Nevertheless, as an immediate consequence of a nonminimal cou-
pling these models entail an effective gravitational coupling which also behaves
asymptotically as Geff ∝ t−2, namely that gravity turns off at the cost of having a
small cosmological constant.

This dramatic behavior encourages one to think about theories in which the
gravitational coupling itself appears as a dynamical field, namely the scalar-tensor
theories of gravitation. Along this line of thought we have concerned here with a
particular form of these theories which is conformally invariant. The conformal
invariance implies that the theory is invariant under local changes of units of length
and time or local unit transformations (Dicke, 1962; Bekenstein and Meisels,
1980). In such transformations different unit systems or conformal frames are
related via spacetime dependent conversion (or conformal) factors. The reason
for introducing such a model to study the cosmological constant problem is the
important fact that the observational estimates and the theoretical predictions are
actually carried out in two different unit systems, the unit systems usually used
in cosmology and elementary particle physics.3 It is generally assumed that these
two unit systems are related by a constant conversion factor. In other terms they
are transformed by a global unit transformation.

In a local unit transformation, on the other hand, changes of unit systems
find a dynamical meaning. We have already shown (Bisabr and Salehi, 2000) that
these dynamical changes of unit systems can be taken as a basis for constructing
a cancellation mechanism which reduces a large effective cosmological constant
to a sufficiently small value. In the present work, we intend to study the effects
of the model introduced in (Bisabr and Salehi, 2000) both on the early and the
late times asymptotic behavior of the scale factor in the standard cosmological
model. In particular, we wish to answer the questions that how this model affects
the inflation at early times and whether it leads to an accelerating universe at late
times.

3 From now on these are referred to as the cosmological and the quantum frames(unit systems),
respectively.
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We shall assume that gravity is described by a conformal invariant gravita-
tional model (action (1)) at early universe, speciffcally before breaking the gauge
symmetry of fundamental interactions at GUT energy scale. When the gauge sym-
metry is spontaneously broken the resulting vacuum energy density as a constant
mass scale introduced by particle physics in the quantum frame, breaks down the
conformal invariance. This mass scale may be considered in different conformal
frames by local changes of the unit system. It means that the vacuum energy den-
sity takes a variable configuration in the cosmological frame. This variation is
controlled by the conformal factor that appears as a dynamical field in our model.
We shall show that this dynamical field plays a key role in a cancellation mecha-
nism that works essentially due to expansion of the universe. It also appears as a
quintessence field which causes the universe to accelerate at late times.

We organize this paper as follows: In Section 2, we introduce a conformal
invariant gravitational theory consisting of a real scalar field which is conformally
coupled to gravity. It is the classical analogue of the model which we have already
investigated in (Salehi et al., 2000; Salehi and Bisabr, 2000). In Section 3, it is
argued that incorporation of an effective cosmological term to the model requires
that one makes a dynamical distinction between the cosmological and the quantum
unit systems. The dynamical distinction means that the two unit systems are related
by a spacetime dependent conversion factor. We then study the consequences of
such a distinction in two parts. Firstly, investigation of the model at early times
reveals that it can bring the universe into an inationary phase. Secondly, we shall
show that while the model leads to a damping behavior for the effective value
of the cosmological constant at late times, it avoids the aforementioned problem
on the gravitational coupling. Moreover, evolution of the scale factor indicates that
the model gives rise to an accelerating expansion for the universe at late times. In
Section 4, we summarize and discuss our results.

Throughout this paper we work in units in which h = c = 1 and the sign
conventions are those of MTW (Misner et al., 1973).

2. THE MODEL

We use a gravitational system which consists of a real scalar field φ and the
gravitational field, described by the action4

S = −1

2

∫
d4x

√−g

(
gµν∇µφ∇νφ + 1

6
Rφ2

)
(1)

where ∇µ denotes a covariant differentiation and R is the Ricci scalar. Note that
the action does not involve the free gravitational field contribution.

4 This action has been investigated in different contexts. See, for example, (Bekenstein and Meisels,
1980; Deser, 1970)
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The remarkable feature of (1) is that it is invariant under conformal transfor-
mations

gµν = e2σ ḡµν (2)

φ(x) = e−σ φ̄(x) (3)

where σ is a smooth dimensionless spacetime function. This means that the theory
described by the action (1) can be considered in many different conformal frames
which are dynamically equivalent. They correspond to various configurations one
assigns to the scalar field φ or various choices of local standards of units. There-
fore different conformal frames may be distinguished by local values of some
dimensional parameters which enter the theory.

Variation of (1) with respect to gµν and φ yields, respectively,

Gµν = −6φ−2
(∇µφ∇νφ − 1

2 gµν∇γ φ∇γ φ
) + φ−2(∇µ∇ν − gµν�)φ2 (4)

and

�φ − 1

6
Rφ = 0 (5)

Here � ≡ gµν∇µ∇ν and Gµν is the Einstein tensor. One should recognize that Eqs.
(4) and (5) are not independent. Indeed, the trace of (4) gives

φ

(
�−1

6
R

)
φ = 0 (6)

which contains Eq. (5). This is a direct consequence of the absence of a dimensional
parameter in the model. In the next section we shall introduce a cosmological term
which leads the field equations to be independent.

3. COSMOLOGICAL IMPLICATIONS

3.1. Vacuum-Dominated Era

It is generally believed that at GUT energy scale the universe has passed
through a certain disordered phase associated with gauge symmetry of the grand
unified theories. When the gauge symmetry is spontaneously broken the structure
of the vacuum drastically changes in the sense that it acquires a large amount of
energy density which appears as a large effective cosmological constant. The key
question which should be answered at this stage is that how this vacuum energy
density should be coupled to gravity.

To clarify this point we remark that the use of two different unit systems are
conventional for measuring this energy density. On one hand, the upper bound set
by observations is obtained in a unit system which is defined in terms of large-scale
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cosmological parameters (the cosmological unit system). On the other hand, the
theoretical predictions are based on a natural unit system which is suggested by
quantum physics (the quantum unit system). One faces with a large discrepancy
between observations and theoretical predictions on vacuum energy density if one
presupposes that these two unit systems are indistinguishable up to a constant
conversion factor in all spacetime points. It means that they transform to each
other by a global unit transformation. Such a global transformation clearly carries
no dynamical implications and the use of a particular unit system is actually a
matter of convenience.

The point we wish to make here is that for introducing a dynamical mech-
anism to reduce a large vacuum energy density one needs to note that such a
mechanism should work whenever the contributions of quantum physics to this
vacuum density are considered at cosmological level since the cosmological con-
stant problem arises when one compares these contributions with relevant cosmo-
logical observations. This point strongly suggests that construction of a mechanism
for relaxing these contributions should somehow take into account the distinction
between the cosmological and the quantum unit systems. In order to establish such
a distinction we would like to consider local unit transformations. We introduce a
theoretical scheme in which an explicit recognition is given to the distinguished
characteristics of the cosmological and the quantum frames. In such a theoretical
scheme one should no longer accept the triviality one usually assigns to a unit
transformation.

We first assume that gravity is described by the conformal invariant gravita-
tional model (1). We also assume that the cosmological and the quantum frames are
described by gµν , φ and ḡµν , φ̄ respectively. When the universe goes through phase
transition, the vacuum energy density takes a nonzero expression that appears in
the action (1) as a large mass scale. This mass scale has a preferred constant config-
uration in the quantum frame, denoted in the following by �̄, which is theoretically
suggested by elementary particle physics. In this case there exists a constant scale
of length that incorporates a distinction between the standard of units, and there-
fore leads to breakdown of the conformal invariance of (1). It should be noted
that this distinction is a dynamical distinction in the sense that two different unit
systems are linked by a local unit transformation.

To incorporate �̄ into the action (1), we write it in the cosmological frame
by a local change of the unit system, namely

� = �̄e−2σ (7)

In the relation (7), � and �̄ denote the cosmological constants in the cosmological
and the quantum frames, respectively. Note that since �̄ carries the dimension
of squared mass, � takes an exponential factor e−2σ . Thus � has not actually a
constant configuration in the cosmological frame.
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Action (1) then takes the form

S = −1

2

∫
d4x

√−g
{
gµν∇µφ∇νφ + 1

6 (R − 2�̄e−2σ )φ2
}

(8)

To study the evolution of the cosmological term �, we let the above action involve
a kinetic term for σ . In this way we consider σ as a dynamical field. This seems to
be necessary to account for the dynamical distinction between the cosmological
and the quantum unit systems as it is implied by the relation (7). We therefore
write the action (8) as

S = −1

2

∫
d4x

√−g

{
gµν∇µφ∇νφ +

(
1

6
(R − 2�̄e−2σ ) + αgµν∇µσ∇νσ

)
φ2

}
(9)

where α is a dimensionless constant parameter. This action can now be used to
describe a vacuum-dominated universe since it excludes any matter contribution.

Variation of (9) with respect to gµν , φ and σ yields, respectively,

Gµν + �̄e−2σ gµν = 6φ−2τµν (10)

�φ − 1

6
Rφ + 1

3
�̄φe−2σ − αφ∇γ σ∇γ σ = 0 (11)

1√−g
∇µ

(√−gφ2gµν∇νσ
) = 1

3α
�̄φ2e−2σ (12)

where

τµν = − (∇µφ∇νφ − 1
2 gµν∇γ φ∇γ φ

) + 1

6
(∇µ∇ν − gµν)φ2

−αφ2
(∇µσ∇νσ − 1

2 gµν∇γ σ∇γ σ
)

(13)

The exponential coefficient of �̄ emphasizes that this mass scale belongs to a unit
system which is different from that used in cosmology.

Intuitively, one expects that there should be no distinction between the cos-
mological and the quantum unit systems at sufficiently early times so that

e−2σ → 1
� = �̄e−2σ → �̄ as t → 0

(14)

This can be taken as an early-time boundary condition for the dynamical field
σ . In an expanding universe the distinction between these two unit systems is
expected to increase with time since all cosmological scales enlarge as the universe
expands. Thus e2σ must be an increasing function of time. According to (7), this
automatically provides us with a dynamical mechanism for reducing the mass scale
� in the cosmological frame.
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Before studying this mechanism we would like to focus on the behavior of
the field equations at early times. To do this, we apply the field equations to a
homogeneous and isotropic universe. In particular, we specialize to a spatially flat
Friedman-Robertson-Walker metric

ds2 = −dt2 + a2(t)(dx2 + dy2 + dz2) (15)

where a(t) is the scale factor. The homogeneity and isotropy require that the fields
φ and σ be only functions of time. The Eqs. (10)–(12) become

3

(
ȧ

a

)2

− �̄e−2σ + 3
φ̇2

φ2
+ 6

ȧ

a

φ̇

φ
+ 3ασ̇ 2 = 0 (16)

φ̈

φ
+ 3

ȧ

a

φ̇

φ
+

(
ä

a
+ ȧ2

a2

)
− ασ̇ 2 − 1

3
�̄e−2σ = 0 (17)

σ̈ +
(

3
ȧ

a
+ 2

φ̇

φ

)
σ̇ + �̄

3α
e−2σ = 0 (18)

where the overdot indicates differentiation with respect to t. We take

a ∼ ent (19)

φ ∼ emt (20)

and

σ = ξ t (21)

We substitute these and the condition (14) into (16), (17) and (18) to obtain

n = ξ = 1√
α(4α + 1)

√
1

3
� (22)

m = (2α − 1)n (23)

These results indicate that the scale factor grows exponentially and the spacetime
geometry is described by the de Sitter metric. This inflation continues to be a
solution until e−2α ≈ 1 holds. After a sufficiently long time this approximation is
no longer valid and the ination ends.

Therefore, this model does not provide any contradiction with existence of
an inflationary phase at early times. This is important since the basic idea of
inflation seems to be the only reasonable program, suggested so far, to resolve the
cosmological puzzles such as the flatness and the horizon problems (Guth, 1981;
Linde, 1982; Albrecht and Steinhardt, 1982; La and Steinhardt, 1989).



2144 Bisabr

3.2. Matter-Dominated Era

To apply the model to a matter-dominated universe we should first introduce
a matter system in action (9). We write

S = −1

2

∫
d4x

√−g

{
gµν∇µφ∇νφ

+φ2

(
1

6
(R − 2�̄e−2σ ) + αgµν∇µσ∇νσ

)}
+ Sm[gµν] (24)

where Sm[gµν] is the matter field action. The gravitational equation for action (24)
will be

Gµν + �̄e−2σ gµν = 6φ−2(Tµν + τµν) (25)

where

Tµν = 2√−g

δ

δgµν
Sm[gµν] (26)

The field equations of φ and σ remain unchanged in the presence of matter. We
may put the Eq. (11) into the trace of (25) to obtain

T γ
γ = 1

3
�̄φ2e−2σ (27)

which is a relation between the trace of the matter stress-tensor and the vacuum
energy density. This relation has important implications that we describe in the
following:

Let us first take Tµν to be the stress-tensor of a perfect fluid with energy
density ρ and pressure p, namely

Tµν = ρuµuν + p(gµν + uµuν) (28)

where uµ is the four velocity of the fluid. For a pressureless fluid, (27) takes the
form

ρφ−2 ∼ �̄e−2σ (29)

In an expanding universe ρφ−2 decreases. The relation (29) predicts that the same
thing happens for �. Two important results arise from this statement. Firstly,
the expansion of the universe induces the reduction of �. This requires that the
conformal factor e2σ , or theσ fleld, be an increasing function of time. We previously
discussed that this is indeed the case in a vacuum-dominated universe. We shall
show that this is also true in a matter-dominated universe.

Secondly, the dynamical distinction which we have made between the cosmo-
logical and the quantum frames does not allow to incorporate naively a constant
mass scale such as �̄ into the action (24). Due to (27), this would not be dy-
namically consistent with the field equations. We intend now to investigate the
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fleld equations in a matter-dominated universe. For the metric (15), the Eq. (25)
becomes

3

(
ȧ

a

)2

− �̄e−2σ + 3
φ̇2

φ2
+ 6

ȧ

a

φ̇

φ
+ 3ασ̇ 2 = 6φ−2ρ (30)

For late times we take

a ∼
(

t

t0

)v

(31)

φ = const. (32)

eσ = σ0t (33)

where t0 is the present age of the universe and σ0 is a constant with dimension
of mass. Let us first estimate the gravitational coupling. To do this, we substitute
(32) into Eq. (30) to obtain

3H 2 − �̄e−2σ + 3ασ̇ 2 = 6φ−2ρ (34)

where H = ȧ
a is the Hubble parameter. Using (29) this equation becomes

3H 2 + 3ασ̇ 2 ∼ φ−2ρ (35)

From the relation (33), one infers that σ̇ → t−1 ∼ H . Thus (35) reduces to

H 2 ∼ φ−2ρ (36)

Now we may use the observational fact that (Weinberg, 1972)

ρ ∼ ρc (37)

with ρc being the critical density

ρc = 3H 2
0

8πG
(38)

Here G is the gravitational constant and H0 is the Hubble constant. When t → t0,
we obtain from (36) and (37)

φ−2 ∼ G (39)

Thus the constant configuration of φ−2 at late times is given by the gravitational
constant. In this case the action (24) reduces to

S = −1

16πG

∫
d4x

√−g(R − 2�̄e−2σ + 6αgµν∇µσ∇νσ ) + Sm[gµν] (40)

This differs from the usual Einstein-Hilbert action in the sense that it contains a
dynamical field σ and a varying cosmological term �̄e−2σ .
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Variation of (40) with respect to gµν and σ gives the field equations

Gµν + �̄e−2σ + 6α

(
∇µσ∇νσ − 1

2
gµν∇γ σ∇γ σ

)
= 8πGTµν (41)

�σ = �̄

3α
e−2σ (42)

For the metric (15) and the matter stress-tensor (28), these equations become

3
ȧ2

a2
− �̄e−2σ + 3ασ̇ = 8πGρ (43)

ȧ2

a2
+ 2

ä

a
− �̄e−2σ − 3ασ̇ = −8πGp (44)

σ̈ + 3
ȧ

a
σ̇ + �̄

3α
e−2σ = 0 (45)

Eq. (43) together with (44) gives

3
ä

a
− �̄e−2σ − 6ασ̇ 2 = −4πG(ρ + 3p) (46)

For p = 0, we combine this with (43) to obtain

ȧ2

a2
+ 2

ä

a
− 3ασ̇ 2 − �̄e−2σ = 0 (47)

Now if we substitute (31) and (33) in the equations (45) and (47) we obtain

v = 2
3 , −3α (48)

σ0 =
√

�̄

3α(1 − 3v)
(49)

One can take the solution v = 2
3 for α < 0 since only in this case σ 2

0 > 0. This cor-
responds to the solution of the standard cosmological model for the evolution of the
scale factor in a matter-dominated universe. For v = −3α, we obtain accelerating
solutions (with v > 1) for α < − 1

3 . The deceleration parameter

q = − äa

ȧ2
(50)

is

q = 1

v
− 1 (51)

which is negative for α < − 1
3 .
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On the other hand, if we use (33) and (49) we obtain for the cosmological
term

� = �̄−2σ ∼ t−2 (52)

which is consistent with the observational bound.
We see that the conformal factor (or the σ field) plays two important roles

in our model. Firstly, evolution of this dynamical field induced by the cosmic
expansion damps a large effective cosmological constant. Secondly, it plays the
role of a quintessence field that causes the universe to accelerate at late times.

4. SUMMARY AND DISCUSSION

We have investigated the cosmological consequences of a conformal invariant
gravitational model which is assumed to hold during the very early stages of
evolution of the universe. The conformal invariance of the model allows us to
formalize a theoretical framework in which there exists a dynamical distinction
between the two unit systems used in cosmology and elementary particle physics.
It is argued that when the universe goes through phase transition the resulting large
effective cosmological constant �̄, as a mass scale introduced by particle physics,
is related to the corresponding mass scale in the cosmological unit system by
� = �̄e−2σ . We have shown that this results in a damping behavior for � caused
by expansion of the universe. We emphasize that this feature is also suggested
by the relation (27) which is a dynamical consistency relation on the trace of the
matter stress-tensor in our gravitational system.

The question which naturally arises is whether such a variable cosmological
term alters the standard picture of early history of the universe. To address this
question, we have shown that there exists a solution for the field equations at early
times exhibiting an exponential growth of the scale factor. It is important to note
that in this model there is a natural exit of the universe from this inflationary phase,
namely when e2σ ≈ 1 does not hold due to growth of σ .

Our primary interest is to explore the cosmological constant problem. We have
shown that the asymptotic solution of the field equations in the matter-dominated
era leads to the following consequences:

1. The relation (52) indicates that the cosmological constant in the cosmolog-
ical frame � is of the same order of t−2 which is consistent with the upper
bound set by observations. The smallness of the cosmological constant is
therefore related to the fact that the universe is old.

2. The gravitational coupling in the present state of the universe is given by
φ−2 σ G.

3. The scale factor exhibits a late-time asymptotic power law expansion a ∝
t v with v > 1.
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This implies that the universe is accelerating and σ plays the role of a
quintessence field. The acceleration of the universe is generally achieved by nega-
tive values of α (α < − 1

3 ). This means that σ is a massless scalar field with positive
energy density.
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